Deflating quadratic matrix polynomials with structure preserving transformations
نویسندگان
چکیده
منابع مشابه
Deflating Quadratic Matrix Polynomials with Structure Preserving Transformations
Given a pair of distinct eigenvalues (λ1, λ2) of an n×n quadratic matrix polynomial Q(λ) with nonsingular leading coefficient and their corresponding eigenvectors, we show how to transform Q(λ) into a quadratic of the form [ Qd(λ) 0 0 q(λ) ] having the same eigenvalues as Q(λ), with Qd(λ) an (n− 1)× (n− 1) quadratic matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and λ2. ...
متن کاملRoot Preserving Transformations of Polynomials
Consider the real vector space P2 of all polynomials of degree at most 2. High-school students study the roots of the polynomials in P2, while linear algebra students study linear transformations on P2. Is it possible to bring these two groups together to do some joint research? For example, a linear algebra student chooses a specific linear transformation T : P2 → P2 and asks others to study t...
متن کاملTriangularizing Quadratic Matrix Polynomials
We show that any regular quadratic matrix polynomial can be reduced to an upper triangular quadratic matrix polynomial over the complex numbers preserving the finite and infinite elementary divisors. We characterize the real quadratic matrix polynomials that are triangularizable over the real numbers and show that those that are not triangularizable are quasi-triangularizable with diagonal bloc...
متن کاملStructure-Preserving Transformations of Skew-Hamiltonian/Hamiltonian Matrix Pencils
ityl or positive realness in a VLSI model is an important property Passivity in a VLSI model is an important property to guarantee stato guarantee stable global simulation [3,7]. Existing DS passivity ble global simulation. Most VLSI models are naturally described tests are restrnctive in different aspects. For example, the extended as descriptor systems (DSs) or singular state spaces. Passivit...
متن کاملQuadratic Transformations of Macdonald and Koornwinder Polynomials
When one expands a Schur function in terms of the irreducible characters of the symplectic (or orthogonal) group, the coefficient of the trivial character is 0 unless the indexing partition has an appropriate form. A number of q-analogues of this fact were conjectured in [8]; the present paper proves most of those conjectures, as well as some new identities suggested by the proof technique. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.06.028